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all close to CRB’s. The unweightted MD-MUSIC algorithm
performs notably worse.

V. CONCLUSION

In this correspondence, we have quantized the effects of the finite
number of snapshots on the DOA estimates derived with subspace
fitting methods. We provided, for the first time, bias expressions for
the totally weighted subspace fitting method estimator. The analysis
is valid for all TWSF methods.
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A New Cumulant Based Parameter Estimation
Method for Noncausal Autoregressive Systems

Chong-Yung Chi, Jian-Lin Hwang, and Chyi-Feng Rau

Abstract—This correspondence proposes a new nonlinear parameter
estimation method for a noncausal autoregressive (AR) system based
on a new quadratic equation relating the unknown AR parameters
to higher order (>3) cumulants of nonGaunssian output measurements
in the presence of additive Gaussian noise. A gradient-type numerical
optimization algorithm is used to search for the optimal AR parameter
estimates. It is applicable regardless of whether or not the order of the
system is known in advance; it is also applicable for the case of the
causal AR system. Some simulation results are offered to justify that
the proposed method is effective.

I. INTRODUCTION

Autoregressive (AR) system identification with only output mea-
surements is a well-defined problem in various science and engineer-
ing areas such as spectral estimation, speech processing, seismology,
sonar, radar, radio astronomy, biomedicine, image processing, vi-
bration analysis, and oceanography. Although most existing AR
parameter estimation methods assume that the unknown AR model
is causal stable, there are some cases wherein the underlying signal
generation model is noncausal, which occurs in astronomical signal
processing, image processing, and geophysical signal processing.

A known fact is that correlation-based AR parameter estimation
methods such as the existing AR spectral estimators are inherently
phase blind and sensitive to additive noise, no matter whether the
signal of interest is Gaussian or not. Recently, signal processing
with higher order statistics known as cumulants has drawn extensive
attention because cumulants can be used to extract not only the
amplitude information but also the phase information of nonGaussian
signals, and they are totally zero for Gaussian processes.

Various cumulant-based AR parameter estimation methods have
been reported in the literature. Most of them such as [1]-[6], [11],
[12], [14], [15] are only applicable in the case of causal stable
AR models; nevertheless, some cumulant-based approaches have
been proposed to identify a noncausal AR model, which is denoted
1/A(z). For instance, Tugnait’s exhaustive search method [7] and
minimum phase-allpass (MP-AP) decomposition-based method [8]
and Huzii's method [9] begin with the estimation of the spectrally
equivalent (SE) minimum-phase system Amp (z) by correlation-based
AR parameter estimation methods. From the set of all AR models SE
to 1/ Amp (2), the exhaustive search method determines the noncausal
1/A(z) to be the candidate whose output cumulants match the
corresponding sample cumulants best. For Huzii’s method and the
MP-AP decomposition-based method, the given nonGaussian data
x(k) are processed by the filter A\MP(Z) to obtain an innovations
process i(k), and the desired noncausal system 1/A(z) is then
determined from cumulants of (k). For instance, Huzii’s method [9]
determines the “winning” model from the set of all SE AR models
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to be the one with the smallest absolute third-order sample cumulant
of @(k) for lag (k1,k2) = (0,—1). Tugnait [7] also proposed an
optimization method by minimizing a cost function formed of the
squared errors between theoretical output correlations and cumulants
and the corresponding sample correlations and sample cumulants.
Giannakis [10] proposed a method that converts the noncausal AR
parameter estimation problem into a causal moving average (MA)
parameter estimation problem.

In this correspodence, we propose a new parametcr estimation
method for a noncausal AR system 1/A(z) based on a rew quadratic
equation relating the unknown AR parameters to higher order cu-
mulants of data. The proposed method finds the optimal estimate
1/ ;—/1\(:) through an iterative numerical optimization al gorithm; it is
applicable no matter whether or not the order of 1/4:z) is known
in advance; it is also applicable for the case of causal AR model.
Section II presents the new AR parameter estimation method. Then,
some simulation results are provided to support the proposed AR
parameter estimation method in Section III. Finally, we draw some
conclusions.

II. A NEw CUMULANT-BASED PARAMETER
ESTIMATION METHOD FOR NONCAUSAL AR SYSTEMS

Assume that z(k) are the given noisy output measurements gen-

erated from a noncausal stable AR model as follows:
P2

> aliy(k i) = u(k) M
i=—py

z(k) = y(k) + w(k) @

where u(k) is a real, zero-mean, independent identically distributed
(i.i.d.) nonGaussian process with Mth-order (> 3) cumulant yas # 0,
and w(k) is Gaussian with unknown statistics. The pth-order (p =
P1+p2) noncausal AR system has a transfer function H(:) = 1/A(z)

where
P2
Alz)= Y alk)z"F = Ai(2) - Aa(2) 3
k=—p1

where
A= ai(=p)P +ar(=p1 + D)2 4@ (0) @)

is a p;th-order polynomial of > with all the roots outside the unit
circle (the anticausal part of A(z)) and

A2(2) = a2(0) + az ()27 4+ + az(p2)z 2 Q)

is a poth-order polynomial of ™' with all the roots inside the unit

circle (the causal part of A(z)). Note that correlation-based AR
spectral estimation methods can only provide an estimate of the SE
minimum-phase Amp(z) given by

Amp(z) = 41(z71) - A2(2) ©®

except for a scale factor.

Let Caso(k1,ko,...,kpr—1) denote the Mth-order cumulant
function of the nonGaussian stationary process x(k). It has been
shown in (1] that

P2
> ali)Cueli = kuy.onyi = knor)
==p1
= ymh(—k1)h(—kz2)-- - h(—kprr—1) m
where h(k) is the impulse response of the noncausal AR system.
Setting k1 = —k and ko = k3 = --- = ka—1 = 0 in (7) yields
P2
Y ali)Corali+ kyis.. i)

t=—p1
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P2

= 3" ai)Cuma(k,=i,0,...,0) = yrh™ 2(0)h(k).

t=—p1
(8)
Convolving both sides of (8) with a(k) gives rise to
P2 P2
Y > aae()Cumatk - j.=i,0,...,0)
i=—p1 }=-p1
=a'C(k)a =y h"*(0)6(k)
)

where 8(k) is the Kronecker delta function, a is a p X 1 vector given
by

a=(a(-p1),a(-p1 +1),...,a(p2))’ 10)

and C(k) isa (p+ 1) x (p + 1) matrix whose (7, j)th component
is given by

[C(k)i; =Cmalk+py—j+1,p1 —i+1,0,...,0). (1)

Assuming that p} and p5 are chosen for p; and p2, respectively, the
proposed method based on the key quadratic equation (9) searches
for the optimum a by minimizing a cost function of either J = J; or
J = J through an iterative numerical optimization algorithm where

K (a'C(k)a)?

Ji(a) = :
(a) (@C(0)a)?

(12)

and

K 'Ck)a)?
Die—xpo(@ CR)2) >0 (13)

J- =
e ol 2

in which C‘(k) is also a (p+ 1) X (p + 1) matrix by replacing each
component of C(k) with the associated M th-order sample cumulant.
It is almost impossible to find a closed-form solution for the optimum
a because both J; and J, are highly nonlinear functions of a.
Instead, the proposed AR parameter-estimation method searches for
the optimum a using a gradient type algorithm as follows:

(S1) Set t = 0. Choose an initial guess for ag = [a(—p}),

..,a(py)]" and an objective function J(a) = Ji(a) or
J(a) = Ja(a), and compute J(ap).
(52) Sett =t + 1.
(53) Normalize a; by a;/||a¢||. Update a; by

_ dJ(ai-1)
a; =a;_, p——aat_1 (14)
such that J(a,) < J(a¢—1), where p is a positive constant.

(54) If

Jae—1) = J(ar) _ _
Ja)  =° 13

where ¢ is a preassigned small positive constant, then go to
(52); otherwise, stop.

Some worthy remarks régarding the proposed AR parameter esti-
mation method are summarized in the following:

(R1) The typical value for p in updating a; with (14) is p = 1.
However, when updating a; with (14) results in J(a¢) >
J(a¢—1), one may continually decrease the value for p by
p/2 until the associated J(a;) < J(a;—1).

The proposed AR parameter estimation method is a single-
step nonlinear optimization algorithm that fits the key
quadratic equation given by (9) with Mth-order sample
cumulants of nonGaussian measurements such that either J;
or Jy is minimum. It relies on neither the SE Anp(z)

(R2)
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as an exhaustive search method [7], [9], nor the MP-
AP decomposition based method [8], nor any conversion
procedure as in Giannakis’ method [10]. However, the
optimum solution for a is not resolvable to a scale factor
since J;(a) = Ji(ba) and Jo(a) = Jo(ba) for any b # 0.

When p; and po are known in advance, the proposed method
works well, whereas the objective function Jo is preferred
to J1 because it is less sensitive to initial conditions for a
by our experience.

When (p} # p1) and (ph # pz) but (p +p5 = p1--p2 = p)
is known, the optimum A(z) turns out to be an estimate
g(;] = aA(z)- 277, where T pL— P = ph — p2
because cumulants are blind to time delay factors. However,
a’'C(0)a = *,M[E(D)]M_2 (the denominator of .7;) could
equal zero since ﬂ(k) =~ (1/a)h{k + 7), and therefore, J>
is preferred to J, for this case.

When none of pi, p2, and p are known a priori, the
optimum estimate A(z) with p, > pi and ph > po tumns
out to be an estimate of aA(z) -z~ 7, where p1 — pi <
r < py — p2. However, we empirically found that the
proposed method associated with J; always provides an
optimum estimate Az «aA(z) for noncausal AR systems
with max|h(k)] = |h(0)]. The reason for this is that
the minimum value of J, for 7 = 0 is always smaller
than that for 7 # 0 because the value of a'C(0)a =
~,',,\13(4))‘”727A1(11(‘r)/a)‘”*2 for 7 = 0 is larger than that
for 7 # 0 in absolute value (see (12)).

The proposed AR parameter estimation method is applicable
for both causal and noncausal AR systems as long as yar # 0
for any M > 3 because the causal AR(p) model is nothing
but a special case of a noncausal AR model for p; = 0 and
p2 = p.

Next, let us show some simulation results to support the proposed
parameter estimation method for noncausal AR systems.

(R3)

(R4)

(R5)

(R6)

III. SIMULATION EXAMPLES

Two simulation examples are to be presented. Example 1 assumes
that (pi.p2) are known a priori, and Example 2 deals with the
case that p{ > p and p) > po, i.e., the order of the AR system
is overdetermined. In the simulation, the driving input (k) used
was a zero-mean exponentially distributed i.i.d. random sequence
with variance o2 = 1 and skewness 73 = 2, and for the selected
noncausal AR model 1/A(z) = 1/[A1(2)A2(z)] (see (3)). data z(k)
of length N = 1024 were generated by letting «(k) pass through
the causal stable AR system (forward processing) 1/A2(z) followed
by the anticausal stable system (backward processing) 1/.4:(z) for
three different signal-to-noise ratios (SNR) (10, 50, 100), where
noise w (k) was white Gaussian. Mean and standard deviation were
calculated from 30 independent estimates of ‘:1\(:) with 3, al(k) =
> a?(k) = 1 obtained by the proposed method with cumulant order
M =3and K = 15 in .J, and .J>. With the same simulation data,
the corresponding results were also obtained using Huzii’s method in
Example 1 for performance comparison. Next, let us turn to Example
1.

Example 1: Two cases for both p, and p; known a priori
are considered as follows:

Case 1: p1 = 1 and p» = 2.
A(z)

—0.3413z 4 0.6996 — 0.5631: 7" 4 0.2773:72
Poles : 0.4 £0.7/.1.25
o1oo).

Initial guess: ag (16)

TABLE 1
SIMULATION RESULTS FOR CASE 1 OF EXAMPLE 1
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True (normalized) AR parameters:
a(—1) = —0.3413, a(0) = 0.6996, a(1) = —0.5631, a(2) = 0.2773

Method Estimated AR parameters (meanztstandard deviation)

SNR =100 SNR =350 SNR=10
The a(—1) | —0.4303£0.0501 | —0.4428+0.0418 |—0.3949+0.1248
proposed | @(0) 0.6695+0.0170 | 0.6656+0.0150 | 0.63851+0.0565
method | @(1) |—0.5600+0.0170 | —0.5592:+0.0202 | —0.5944:£0.0844
(J=J4) | a(2) 0.2207£0.0349 | 0.2119+0.0293 | 0.2334+0.0593
a(—1) [ —0.3496+0.0126 | ~0.3515+0.0170 |—0.1712+0.1127
Huzii's | @(0) | 0.7235+0.0083 | 0.7460+0.0096 | 0.5289+0.2775
method | @(1) [—0.5348+0.0107 |—0.5110£0.0134 | —0.5764:£0.3669
a(2) 0.2606+0.0119 | 0.2409+0.0148 | 0.175940.3387

TABLE II
SIMULATION RESULTS FOR CASE 2 OF EXAMPLE 1
True (normalized) AR parameters:
a(—3) = —0.2071, a(~2) = 0.3659, a(—1) = —0.5247,
a(0) = 0.6317, a(1) = —0.3452, a(2) = 0.1726

Method Estimated AR parameters (meantstandard deviation)

SNR =100 SNR =50 SNR=10
a(—3) | -0.2119+0.0170 | —0.21434+0.0183 | —0.2611+0.0587
The a(—2) | 0.3632+0.0132 | 0.360840.0155 | 0.3131+0.0768
proposed | @(—1) [~0.5239+0.0121 | —0.521240.0142 | —0.4710+0.0670
method | @(0) 0.6330+0.0112 | 0.6370+0.0127 | 0.6910+0.0575
(J =Jy) | @(1) |~—0.3423+0.0174 | —0.3400+0.0215 | —0.2946+0.0734
a(2) 0.172040.0149 | 0.1711+0.0167 | 0.1548+0.0326
a(—3) [ -0.2236+0.0242 | —0.201740.0950 [—0.1276+0.1931
@(-2) | 0.3926+0.0445 | 0.3648+0.1547 [ 0.2317+0.2483
Huzii's | @(—1) |-0.5475+0.0177 | —0.5397+0.0332 | 0.0740+0.2201
method | @(0) 0.6379+0.0263 | 0.6289+0.0454 | —0.2554+0.3461
: a(l) |—0.2556+0.0419 | —0.2317+0.1146 | 0.4094+0.2386
a(2) 0.1335+0.0299 | 0.1541+0.1223 | —0.5090+0.3502

Case 2: py = 3 and pp = 2.

A(z) = —0.2071z° + 0.3659z% — 0.5247z + 0.6317
—0.3452:7" 4+ 0.1726272
Poles: — 0.02 + 1.17525, 0.3 + 0.6403;,1.206
[poo100].

Initial guess: ag = (17

The objective function Jo with p| = p; and p5 = po was used,
and the parameter p and < were set to p = land ¢ = 1 x 107"
in the associated gradient-type optimization algorithm. For Huzii’s
method, the SE minimum-phase _-’1\Mp(z) was obtained by the well-
known Burg’s method [17], and the desired A (=) was determined to
be the one with minimum {|C, ~(0, —1)] 4 |C, ~(0. =2)| 4+ --- +
|C, (0, =5)} /|C; ~(0.0)], where @(k) is the associated output
of K(z) with the input (k). The simulation results obtained using
both methods are shown in Tables I and II for the above two
cases, respectively, together with the true third-order noncausal AR
parameters. The typical number of iterations spent by the optimization
algorithm ranges from 30 to 100 for Case 1 and from 40 to 120
for Case 2. From these tables, one can see that both methods have
smaller variance and bias for higher SNR. For SNR = 100, both
the proposed method and Huzii’s method have similar performance,
whereas for SNR = 10, the performance of the former is much
better than that of the latter. The reason for this is that the proposed
cumulant-based AR parameter estimation method is Gaussian noise
insensitive, but Huzii’s method relies on an accurate estimate for
Amp(z), which was obtained by a noise-sensitive correlation-based
AR spectrum estimation algorithm. Inaccurate estimates jMp(:)
provided incorrect possible pole locations of the AR system and
further led to incorrect decisions in determining the noncausal SE
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TABLE 1II

SIMULATION RESULTS OF EXAMPLE 2

Objective function: J = J;
n=2p=0p=2p
True (normalized) AR parameters: a(—2) = 0.6271,

a(—1) = 03484, a(0) = 0.6967, a(1) = 0, a(2) := 0

=2

Estimated AR parameters {mean+standard deviation)

SNR=100 SNR=50 SNR=10
a(—2) | 0.6311+0.0287 [ 0.6346+0.0325 | 0.654€+0.0504
a(—1) | 0.3339+0.0391 | 0.3282+0.0440 | 0.250+0.1092
&(0) 0.69304+0.0313 | 0.6898+0.0386 | 0.6304+0.1537
a(1) |—0.0134+0.0565 | —0.0233+£0.0660 | —0.1422+0.1652
a(2) |—0.0022+0.0567 | —0.0050+0.0656 | —0.054€+0.1297

candidate A(z), which accounts for the performance degradation.
This also indicates that the proposed method is much more insensitive
to Gaussian noise than Huzii’'s method. Globally speaking, these
simulation results support the good performance of the proposed
method.

Example 2: None of p; = 2,p; =0, and p = p; + p2 = 2 are
known.

A(z) = 0.62712% 4 0.3484z + 0.6967
Poles: — 0.2778 3+ 1.0168;

Initial guess: ao =[00100]". (18)

The objective function J; with py = 2 (> p1 = 2) and pj = 2
(> p2 = 0) was used, and the parameters p and ¢ were also set to

=1landc=1x10"" in the associated gradient type optimization
algorithm. The simulation results, together with the 'rue second-
order anticausal AR parameters, are shown in Table III. The typical
number of iterations spent by the optimization algorithm ranges from
10 to 50 for this example. Note that 2(k) = 0 for ¥ > 0 and
max |h(k)| = |h(0)| = 1.4353 for this case. From Table III, one can
see that estimates @(—2), @(—1), and @(0) are quite close to a(—2),
a(—1), and a(0), respectively, and @(1) and @(2) are around zero.
These simulation results also justify the statements presented in (RS).

IV. CONCLUSION

We have presented a new cumulant-based parameter estimation
method for noncausal AR systems based on a new quadratic equa-
tion given by (9). The proposed method is a nonlinear estimation
algorithm minimizing either J; given by (12) or J2 given by (13),
and the unknown pth-order AR noncausal system 1/A(z) where A(z)
is given by (3) can be estimated except for a scale factor (see (R2)).
When both p, and p, are known, J; is preferred to J; (see (R3));
otherwise, an unknown time delay may exist in the estinated A(z);
when p = p; + p2 is known but p, and p- are not known, J> is also
preferred to J; (see (R4)); when none of p1, p2, and p are known, J;
is preferred to J» with pf > p1 and p5 > p2 (see (RS)). The proposed
method is also applicable for the case of causal AR model (see (R6)).
Finally, two simulation examples were provided to justify that the
proposed AR parameter estimation method is effective. The presented
simulation examples also indicate that the proposed method is much
more insensitive to Gaussian noise than those methods reported in
[71-[9] that rely on the estimation of SE Awmp(z) by ncise-sensitive
correlation-based methods.
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